An entropy-based test for goodness of fit of the von mises distribution
نویسندگان
چکیده
منابع مشابه
Entropy-based Goodness-of-fit Test for Positive Stable Law
A goodness-of-fit test for positive stable law is proposed. For this mean, the Kullback-Leibler distance measure, as a basic tool in entropy theory, is considered. A simulation study is performed to compare the performance of the proposed method and old ones that suggested by Shkol’nik [6]. The results reveal that the introduced approach here shows more performance, in the sense of the test sta...
متن کاملA New Goodness-of-Fit Test for a Distribution by the Empirical Characteristic Function
Extended Abstract. Suppose n i.i.d. observations, X1, …, Xn, are available from the unknown distribution F(.), goodness-of-fit tests refer to tests such as H0 : F(x) = F0(x) against H1 : F(x) $neq$ F0(x). Some nonparametric tests such as the Kolmogorov--Smirnov test, the Cramer-Von Mises test, the Anderson-Darling test and the Watson test have been suggested by comparing empirical ...
متن کاملAn Updated Review of Goodness of Fit Tests Based on Entropy
Different approaches to goodness of fit (GOF) testing are proposed. This survey intends to present the developments on Goodness of Fit based on entropy during the last 50 years, from the very first origins until the most recent advances for different data and models. Goodness of fit tests based on Shannon entropy was started by Vasicek in 1976 and were continued by many authors. In this paper, ...
متن کاملA Goodness of Fit Test For Exponentiality Based on Lin-Wong Information
In this paper, we introduce a goodness of fit test for expo- nentiality based on Lin-Wong divergence measure. In order to estimate the divergence, we use a method similar to Vasicek’s method for estimat- ing the Shannon entropy. The critical values and the powers of the test are computed by Monte Carlo simulation. It is shown that the proposed test are competitive with other tests of exponentia...
متن کاملA Goodness-of-fit Test for the Distribution Tail
In order to check that a parametric model provides acceptable tail approximations, we present a test which compares the parametric estimate of an extreme upper quantile with its semiparametric estimate obtained by extreme value theory. To build this test, the sampling variations of these estimates are approximated through parametric bootstrap. Numerical Monte Carlo simulations explore the cover...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Computation and Simulation
سال: 2000
ISSN: 0094-9655,1563-5163
DOI: 10.1080/00949650008812048